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ABSTRACT

A commonly occurring problem is that of minimizing least

squares expressions subject to restrictions on the solution.

Dykstra (1983) has given a simple algorithm for solving these types

of problems when the constraint region can be expressed as a finite

intersection of closed, convex cones. Here it is shown that this

algorithm must still work correctly even when each cone is allowed

to be arbitrarily translated (as long as the intersection is non-

empty). This allows the algorithm to be applied to a much larger

(ollection of problems than previously indicated. C
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constraints, translations, minimizations, dual cones, iterations.
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An Algorithm for Least Squares Projections

onto the Intersection of Shifted Convex Cones

Richard L. Dykstra

1. Introduction.

The problem of obtaining least squares projections subject to

various constraints is a frequently occurring problem in many areas.

For example, the area of isotonic regression usually is concerned with

obtaining least squares vectors which must satisfy certain partial order

restrictions (see Barlow, Bartholomew, Breminer and Bruink (1972) and

Robertson and Wright (1981)). Another example concerns finding the

closest (least squares) convex. (concave) function through a set of

points in the plane (see Hildreth (1954) and Wu (1982)).

Many times, the constraint region can be written as a finite inter-

section of simpler constraint regions. This raises the possibility of

ising iterative schemes based upon the projections onto the simpler

regions for solving the overall problem.

John Von Neumann (1950) has shown that if the constraint region

is an intersection of two subspaces, cyclic iterative projections onto

the individual subspaces must converge to the desired -projection.

Norbert Weiner (1955) independently proved a version of this theorem

in a slightly different setting.
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Dykstra and Robertson (1982) have developed an iterative procedure

for finding projections of rectangular arrays onto the class of arrays

with nondecreasing rows and columns based only upon one-dimensional

smoothings. Later, Dykstra (1983) extended this approach to the general

framework of projections onto the intersection of closed convex cones.

This procedure is based upon finding projections onto the individual cones,

and reduces to Von Neumann's and Weiner's method when the cones are

also subspaces.

It is the purpose of this paper to show that Dykstra's (1983)

algorithm can be extended to work for projections onto a finite non-

empty intersection of shifted (translated) closed, convex cones. In

particular, this means that least squares projections under general
n

linear constraints of the form [ aixi < (=) b can be handled by
1

Dykstra's algorithm even when b 0 0. This clearly follows by writing
n

{x: a.x. < b) as
1

n
{x: a.x. < 01 (-b/a ,,... ,0).

1

Constraints of the form

Y i < x i < z i i 1 .. ,

where y and z are fixed vectors fall into the translated cone

framework by writing

{x: Yi !x 1. zi Vi}
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as

({x: xi > O} - (-yl,-y2,...,-yn)) fl ({x: x. 
< 01 - (-Zl,-z2 ,...,-z ))

Other examples of cone conatraints given in Dykstra (1983) can be general-

ized to translated cone constraints.

2. Notation and Setting.

We denote n-dimensional real coordinate space by and let

n
g and w(w. > 0) be fixed points in Rn . The inner product of x

1

and y (with respect to w) is given by

n
(x,y) = YiW •

i=l

The corresponding inner product norm of x is defined as

1 1
2 n 2

(2..) tIxl = (x,x) = ( xiwi ) .
1

A closed (in the metric) subset K of Rn is a closed convex

cone if x,y E K; a,b > 0 implies ax + by. E K. The dual cone of a

closed, convex cone K is defined as

n
(2.2) K* = {y Q Rn; (y,x) = Yi ii < 0 Vx G K}.

Of course K* is also a closed, convex cone with the property that

K** = K.



A c~ommonly occurring problem is to find the x which will

(2.3) Minimize lig - x11
xEC

where C is a closed, convex set (x,y E C implies ax + (1-a) ' C

VaC [0,1]). A vector g* E C achieves the minimal value in (2.3)

iff

(2.4) (g-g*,g*-f) > 0 for all f CC.

If C is actually a closed, convex cone, we may replace (2.4) by

i) (g-g*,g*) = 0, and
(2.5)

ii) (g-g*,f) < 0 for all f E C.

(See Theorem 7.8 of Barlow et al. (1972).)

Note that (2.5) implies that if C is a closed, convex cone and

g* solves (2.3), then g-g* C-C*.

3. The Algorithm.

We wish to consider problems of the form

(3.1) Minimize lg - xl

E ri (Ki-bi)
1
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where K. is a closed, convex cone in Rn, b. Rn,
r

K.-b. = {x-bi; x E K.i}  and 1 (Ki-b i ) #0. We assume that we can

find the vector in Ki-b i which will

(3.2) Minimize lif - xI1
E K.-b.1 1

for any f and any i, and wish to use this ability to solve (3.1).

We note that if P(fJ C) denotes the projection of f Z n

onto the closed, convex set C, then for a closed, convex cone K

S(3.3) P(f I K.i-b. = P(f + b i I K. - b..
I 1 1

Thus

(3.4) f - P(fJ K.-b.) = (f + b.) - P(f + b.) Kt for all f

by (2.5) ii).

We shall make extensive use of (3.h).

Our proposed algorithm is identical to that given in Dykstra (1983)

except that we allow projections onto shifted, closed, convex cones.

Our scheme can be succinctly stated with the aid of the following

notation:

i) For any positive integer n, we define n(mod r) = i if

n = kr + i for integers k and i where 1 < i < r.

ii) Initially, set n = 0, go = g, and I. = 0 , Rn

i l ' 'r
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The iterative procedure is to

1) Set gn+l = P(gn - In(mod r) Kn(mod r) - bn(mod r) )' and

then update In(mod r) by resetting it equal to

n+l - ( g  - In(mod r) )

2) Replace n by n+l and go to 1).

We refer the reader to Dykstra (1983) for further elaboration on the

algorithm and its uses. This procedure requires only the ability to find

projections onto the K. (see (3.3)). These individual projections are

often easy to program and quick to execute, and hence can be combined

to solve rather difficult optimization problems.

In particular, the algorithm applies to quadratic programming

n
problem with a finite number of constraints of the form a.x. < b.

h. Proof of the Algorithm.

To simplify the proof for n > 1, we will write g in (3.5)

as gk,i when n = (k-l)r + i, 1 < i < r. (In other words, g, is

the projection onto the it h  shifted cone during the kth  cycle.)

In similar fashion we depict

gk,i - (gk,i-l - Ik-l,i)' if 2 < i < r

(4.1) I kJ I

l - ( l - Ik-1,1)' if i 1.

We will also have need of the following lemma, a proof of which is found

in Dykstra (1983).
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Lemma 4.1. Suppose a sequence of nonnegative real numbers {a }
n n=l

is such that [ a2 < w. Then there exists a subsequence
M 1  n

fa I such thatnj J=l

ni

naa 0 as J -*o.
ml nj

We now establish the fundamental result of the paper.

Theorem 4.1. The vectors g defined in (3.5) converge to the

true solution, say g*, of the problem defined in (3.1) as n - w.

r
Proof. Since CI (K. - b.) # 0, we may assume WLOG that

1 1r 1

SE A (K. - b.). Then bE... K, and the true solution g* exists

uniquely. Note from (4.1) that

gn,i-1 - gn,i I In-l,i - I n'i9 i = 2,...,r, and

(4.2)

gn-l,r - gn,l I In-l,l - I n,l"

Thus, in general (I = 0), for i > 2

gn,i-I = 1 ,i +(In-l,i nj 1

- *~ 2= l'~~,~- g )1 + (Ini - i) 1 2

(4.3) = IIgn,i g* 2 + Inli n,i 2

+ 2(gn, + b , Inl, i - In,i ) - 2(g* + bi, I - In,i).

Note that (gn,i + bi , Ii) = 0 (by (2.5)).
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Moreover, since gn,i + b. E K. and -1 E K. (by (3.4)), the

next to last term is nonnegative.

Similarly

jig- g* 1 2  >  gn ,l - g* j1 2  + i2 - n,l i 2

(14. )

-2(g* + bl I - n,1).

Repeated application of (4.3) and (4.4) together with addition and the

telescoping property of the last term yields

r 2

jlg - g*1 2 >_jg - g*jj2 + Z ii l - Ik£> 19n,r kk £=i k,01

(4.5)
r

+ 2 ; (g* + bi, I for all n.
i~

Since the last sum is nonnegative (g* + b. E K., -I .'Q K!), we know
1- 2. f,i 1

(4.6) f IIIk.lQ - 2
k1 =l T

and hence

In-l, - In,tl = Ilgn,_ I - gn,Z11 (Z > 2) and

(-.7)

In1l,1 - I n,1I1 = llgn-l,r - gn, 1 II - 0 as n -



9

We note that (4.5) implies that gn,r and g g + ... + n,r

are uniformly bounded.

Next we show, that there exists a subsequence {nj} such that

r
(4. 8) limsur~ (I + I + ... + 1nr g f) < 0 V"' E F- (K. -b.)

j n. ,l n j,2 " n,r n,- 1 i

To see this, note that

(I +'-.+I ,g -f)

(Inl n,r' gnl

r
(4.9) - (1 , - f - (g + b.))(since(T +b.) = 0)i n '1 gnjl n,i 1 n,i9 gn,i+

r r
= i2 n,i , + i=1 (-I n,., + b. "

i=2 i=l

The last sum is nonpositive since f + b. E K. and -I (£ Kf.
1 1 n,1 I

For the first part, we use the Cauchy-Schwarz Inequality to say

I (I 5 - g,'
i=2 nj

rX_ IIni l IIgn, - gnAiN

i=2 ni nj

r n r
I. ( I 1IMi - ,-lill M( I 11gn k- g,1

i=2 m=l m,i Z-i =2n,*-

i% r r
X . I l II)( M -l i1 lig n  t - 9n,9 11

ml i=2 Z,i m-l'i £=2 ,£-i - £

n
-- aa

m =I m n
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r r

where a n r rgn, n - i (see (4.7)).
t=2 X=2

Since

2 r-2 ri 2an -- 2 n,t - I n-1,£ k 1

t=2

(4.6) implies that [ a2 < _. Thus lemma (4.1) can be employed to
n=1

yield (4.8). Moreover, since the gn,r are uniformly bounded, we may

assume that we have chosen a subsequence such that (4.8) holds and

gnj,r converges, say to h. Note that (4.7) insures that gn

also converges to h for every X, and hence that
r

h ' r I(K. - b.) (the K. are closed). In addition, since the
1 1 1 1

gnj - = In 1 + + I are uniformly bounded and converge,r g In~l + " n + n,r

to h-g, we may use (2.4) to argue h = g*.

Finally, in a manner similar to (4.5), we can show

- 2 =jg1 n r

1 gn, 9r - I 2 = lgn,r - mj+l =i m ' - I m-I'£k2

(4.1o)

+ 2 X ((gm'k + b) (g* + b) I - ).
m-nj +1 Z=1

We may write the last sum as

n r

(4.11) 2 j I (gm, + bt, Iml9.)
m-n +1 + Il

n r
(4.12) -2 1 X + bt, IQ)

m=n +1 =



r
(4.13) +2 1 (g* +bil I , )

k2,' n,2I

(4.14) -2j (g* + bt, I

Each term of (4.II) is nonnegative (gm,2  + b2 ' Kp, -.I, K).

Each term of (4.12) is zero by (2.5). Each term of (4.13) is nonnegative

for the same reason as (4.11).

Finally, we can write (4.14) as

r r-2[(g*, I I £it) + j. (b£, I ,)

£=l I = Ij

r r
-2[(lim g n , 1n ,I + (b , I n,).nj~l i£ llj £=I

r r
, -2[lim [(g 1') nj, + = (bsI n ,4 )1

j-31 n,, L=

r
-2 -lim X (I n ,%,gn  - n )]

J-)am Z=2 j'j

by taking f to be Q in 4.9. This clearly equals zero by the

way {n I was chosen. Then noting that the left side of (4.10)

goes to zero as j -, it easily follows that g n,r g *  as n - .

This clearly is good enough by (4.7).



12

REFERENCES

1. Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D.

(1972). Statistical Inference Under Order Restrictions, New York:

John Wiley.

9. Dykstra, Richard L. (1983). "An Algorithm for Restricted Least

Squares Regression," Journal of the American Statistical Association,

78, 837-842.

3. Dykstra, Richard L. and Robertson, Tim (1982). "An Algorithm for

Tsotonic Regression for Two or More Independent Variables,"

Annals of Statistics, 10, 708-716.

4. Hildreth, C. (1954). "Point Estimates of Ordinates of Concave Functions,"

Journal of the American Statistical Association, 49, 598-619.

5. Robertson, Tim and Wright, F.T. (1981). "Likelihood Ratio Test

For and Against a Stochastic Ordering Between Multinomial

Populations," Annals of Statistics, 9, 1248-1257.

Von Neumann, John (1950). Functional Operators (Vol. II). Princeton,

N.J.: Princeton University Press.

7. Wiener, N. (1955). "On Factorization of Matrices," CoMent Mathematici

Helvetici, 29, 97-111.

8. Wu, Chein-Fu (1982). "Some Algorithms for Concave Regression and

Isotonic Regression," Management Science (forthcoming).



%ECURITY CLASSIPICATION OP ThIS PAGE ( G.. '.'e.d)
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

REPORT NUMbIE 2. GOVT ACCESSION NO S. IRECIPIENT'S CATALOG NUMBER

103
4. ?IT 1. (smtf *uattfi) S. TYPE OF RIEPORT II PERI 0 COVERED

An Algorithm for Least Squares Projections onto Technical - Au us 84
the Intersection of Shifted, Convex Cones

. PERFORMINO ORG. RERO NT WUNDER
103

7. AuTiOR(.) S. CONTRACT OR GRANT NUMOSEPW)

Richard L. Dykstra N00014-83-K-0249

11. PERFORMING OROANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Statistics and Actuarial Science AREA 4 WoRK UNIT NU,,ERnS

The University of Iowa
Iowa City, Iowa 52242

ti. CONTROLLING OFFICE NAME ANO ADDRESS TIE

Office of Naval Research -1984

800 N. Quincy 13. NuMSER oF PAGES

Arlington, VA 22217 12

14 MONITORING AGENCY NAME & ADORESS(II dlgfgevnI Iftsm CAetraIllnA Office) IS. SECuRITy CLASS. (( Itis report)

Unclassified

11s. DECLASSIPICATION/DOWIINGRAOING

SCNEDULE

IS. VISTRIBUTION STATEMNT (of IAie ReperIj

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

IT. DISTRIBUTION ST ATEMENT (of the tobalte miered Ini BI.o , 20. It diIre n,,m I Re or.

I. SUPPLEMENTARY NOTES

It. K9V WOROS (C..fIlmwe ". creele I1d if ROC04e.*rV mOd #&lmfh r bletc ...nt b*)

Least squares projections, regression, cones, constraints, 
translations,

minimizations, dual cones, iterations.

B0. 4It81 RACT (Cm.Ifoe. an ,'W00 .ld* 61 toneeseavr aid Imfdif 6V blaes Mmmh)

A commonly occurring problem is that of minimizing least 
squares expres-

sions subject to restrictions on the solution. Dykstra (1983) has given a

simple algorithm for solving these types of problems when the 
constraint region

can be expressed as a finite intersection of closed, convex 
cones. Here it is

shown that this algorithm must still work correctly even when 
each cone is

allowed to be arbitrarily translated (as long as the intersection 
is nonempty).

This allows the algorithm to be applied to a much larger 
c-ollection of problems

than previously indicated.

DO , ,, 1o I NoV 6 is OUsoLe Unclassified
S'N 0102, LP-0)4-060) SE[CURITY CLASSIFICATION OP TWIS PAGE (11llen Del. EnIW.4e"

1A



A

A


